Instantaneously complete Yamabe flow on hyperbolic space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvature Flow of Complete Convex Hypersurfaces in Hyperbolic Space

We investigate the existence, convergence and uniqueness of modified general curvature flow (MGCF) of convex hypersurfaces in hyperbolic space with a prescribed asymptotic boundary.

متن کامل

Curvature Flow of Complete Hypersurfaces in Hyperbolic Space

In this paper we continue our study of finding the curvature flow of complete hypersurfaces in hyperbolic space with a prescribed asymptotic boundary at infinity. Our main results are proved by deriving a priori global gradient estimates and C2 estimates.

متن کامل

Uniqueness of Instantaneously Complete Ricci flows

We prove uniqueness of instantaneously complete Ricci flows on surfaces. We do not require any bounds of any form on the curvature or its growth at infinity, nor on the metric or its growth (other than that implied by instantaneous completeness). Coupled with earlier work, particularly [25, 12], this completes the well-posedness theory for instantaneously complete Ricci flows on surfaces.

متن کامل

Total Curvature of Complete Surfaces in Hyperbolic Space

We prove a Gauss-Bonnet formula for the extrinsic curvature of complete surfaces in hyperbolic space under some assumptions on the asymptotic behaviour.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2019

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-019-1634-9